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Abstract

The one-to-one strategy of mapping each single data item into a 
graphical marker adopted in many visualization techniques has 
limited usefulness when the number of records and/or the 
dimensionality of the data set are very high. In this situation, the 
strong overlapping of graphical markers severely hampers the 
user’s ability to identify patterns in the data from its visual 
representation. We tackle this problem here with a strategy that 
computes frequency or density information from the data set, and 
uses such information in Parallel Coordinates visualizations to 
filter out the information to be presented to the user, thus reducing 
visual clutter and allowing the analyst to observe relevant 
patterns in the data. The algorithms to construct such 
visualizations, and the interaction mechanisms supported, inspired 
by traditional image processing techniques such as grayscale 
manipulation and thresholding are also presented. We also 
illustrate how such algorithms can assist users to effectively 
identify clusters in very noisy large data sets. 

CR Categories: I.3.6 [Computer Graphics]: Methodology and 
Techniques - Interaction Techniques; H.5.2 [Information 
Interfaces and Presentation]: User Interfaces - Graphical user 
Interfaces (GUI). 

Keywords: information visualization, visual clustering, density- 
based visualization, visual data mining. 

1 Introduction 

Many techniques have been proposed for exploratory visualization 
of multidimensional data, targeted at both generic and specific 
application domains [2, 7, 9, 14, 17]. Some of these techniques 
adopt the strategy of mapping each single data item (a tuple of 
record attributes) into a graphical marker (and its visual 
properties) displayed on the screen. This one-to-one mapping 
strategy has limited usefulness when the number and/or the 
dimensionality (i.e., the number of attributes) of records are very 
high, as it results in strong overlapping of graphical markers, 
causing visual disorder and hampering visual exploratory analysis 
tasks.
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The problem, whose severity is typically proportional to data set 
size, is clearly illustrated in Figure 1, which exhibits a Parallel 
Coordinates visualization [6] of a synthetic data set with 7,500 
five-attribute records. This data set (identified as the Sint1 data) 
has 2,920 of its records distributed into five clusters, with Clusters 
1 to 5 having 848, 728, 8, 608 and 728 records, respectively. The 
remaining 4,580 records were generated randomly, constituting 
noise. Nevertheless, it is impossible to observe the clusters in the 
visualization.

When visually exploring a great volume of raw data, a data 
analyst searches for relevant information – for example, trying to 
identify correlation among attributes or the presence of potentially 
interesting clusters of records. To support these tasks, cluster 
identification in particular, it is important to reduce the visual 
clutter due to overlapping of visual markers, avoiding displaying 
irrelevant information and enhancing the presentation of the useful 
one. For example, isolated records that do not belong to any 
cluster could be hidden from display during an exploration task 
targeted at cluster identification. In order to do this, clusters – 
dense regions of data – need to be identified in the 
multidimensional space so that the user may control the 
information displayed.  

Figure 1 – Parallel Coordinates visualization of the Sint1 data set 
(7,500 five-attribute records). 

We tackle this problem here with a strategy that computes 
frequency and density information from the data set, and uses such 
information in Parallel Coordinates visualizations to filter out the 
information to be presented to the user, thus reducing visual 
clutter and allowing the analyst to observe relevant patterns in the 
data. Filtering is interactive and user-controlled, and the 
visualizations actually support interactive cluster identification in 
high-dimensional spaces. Algorithms to construct such 
visualizations are presented, and interaction mechanisms to 
support visual cluster identification are discussed. The algorithms 
proposed operate over a discrete raster representation of the 
Parallel Coordinates display, creating a frequency-based (or 
density-based, depending on the user’s goals) visualization.

The algorithms developed for creating the frequency- and 
density-based visualizations, named Interactive Parallel 
Coordinates Frequency Plot and Interactive Parallel Coordinates 
Density Plot, respectively, use integer arithmetic only, have linear 
complexity and can manipulate data sets in the order of hundreds 
of thousand records. Moreover, as they use frequency and density October 10-12, Austin, Texas, USA 
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information, they present no restrictions regarding cluster shape – 
clusters in the data set are identified regardless of their 
dimensionality and shape, as cluster identification does not require 
computation of distance values amongst data elements. The 
approach has been tested with several real and synthetic data sets, 
and proved effective for detecting the presence of clusters and 
other structures in data, and for extracting them.

This paper is organized as follows: Section 2 reviews related 
work, focusing on strategies presented in the literature that use 
frequency or density information in Parallel Coordinates 
visualizations with the goal of highlighting relevant information in 
´noisy´ visualizations. In the same Section we also introduce the 
main definitions used later. Section 3 describes and discusses the 
algorithms developed to create Interactive Parallel Coordinates 
Frequency and Density Plots. Section 4 presents the results of 
using such plots in the visual exploration of some data sets, and 
describes the interactive visualization process conducted to locate 
and extract clusters. Conclusions are presented in Section 5. 

2 Background and Related Work 

Parallel Coordinates is a well-known geometric projection 
visualization technique [6] that is very effective for identification 
of one-dimensional characteristics of data, such as marginal 
densities, and two-dimensional characteristics such as the 
correlation among attributes. It also allows investigating the 
presence of multi-dimensional clusters and hyper-planes [16]. 
However, analogously to other visualization techniques, it also 
suffers from the excessive visual crowding when applied to data 
sets with a few thousand records or more. Even though operations 
such as filtering and selection may reduce this problem, 
exploration is still difficult in severely crowded visualizations.  

Statistical information, such as, data frequency and data density 
estimation to highlight visualization areas with greater information 
content have been used by several authors. The concepts of 
frequency and density are described next. Let the matrix Dmxn

represent a set of data containing m records with n attributes each 
(n-dimensional); thus each row of the matrix corresponds to one 
item that represents an n-dimensional variable. 
Definition 1 (Frequency): The frequency function of Dmxn for the 
n-dimensional variable x may be defined by Equation (1), where h
is the size of the intervals (or bins) within which the frequency is 
being measured. Such intervals are defined, starting at an arbitrary 
point O (the origin), as [O+jh, O+(j+1)h) [12], for positive and 
negative integers j:

mh
f )(x                                           (1) 

where  is the number of records di contained in the same bin that 
contains x. A major difficulty is the need to define the bins for 
counting the records, i.e., the size h and the origin O. Different 
choices for these values may lead to distinct results.
Definition 2 (Density): The density function of the data matrix 
Dmxn for an n-dimensional variable x, based on a kernel density 
estimation function K, is defined by Silverman [12] with Equation 
(2):
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where di is the i-th record of the data set (the n-dimensional 
variable given by the i-th row in matrix D) and K is the kernel 
function defined for the n-dimensional variable  x,  which  satisfies                               
                             .   Even   though   various   kernels    have   been 

proposed, the most common ones are square wave and Gaussian 
functions. The parameter h in the density function defines a 
smoothing factor or bandwidth. When h 0 one obtains a sum of 
Dirac’s Delta functions [12], which tend to highlight only the 
overlapping of data records, while large h values highlight areas 
with large concentration of data, i.e., clusters. An alternative 
computation, more efficient than using Equation (2), considers 
only the influence of neighboring points on each point in the data 
set, for an arbitrary neighborhood. This may be modeled by a 
mathematical function referred to as influence function, which
describes the impact of a point on its vicinity and is equivalent to a 
smoothing filter. The point density is approximated by the sum of 
the influence functions of all its neighboring elements within a 
given region [4]. We employed this approach in our solution, 
using a square wave filter function rather than a Gaussian. 

Several authors have investigated ways to highlight relevant 
information in crowded Parallel Coordinates visualizations, some 
of which are discussed as follows. Miller and Wegman [8] and 
Wegman [15] suggested the use of Averaged Shifted Histograms 
(ASH) [11] to visualize density plots with Parallel Coordinates. 
ASHs are aimed at minimizing the problems introduced by the 
choice of the bins when computing the frequency histograms. 
Wegman and Luo [16] also suggested density plots to help 
identifying clusters and uncommon features in Parallel 
Coordinates visualizations. In their approach, the pixels of the 
polygonal lines are painted with intensity proportional to the 
pixel’s record overlapping. Figure 2 shows visualizations of the 
Pollen data set1 with both conventional Parallel Coordinates (2(a)) 
and with their density strategy (2(b)). This is a synthetic data set 
with 3,848 five-attribute records, from which 3,749 records 
contain arbitrary values (Gaussian observations), and 99 added 
records constitute six clusters forming the six letters of the word 
EUREKA. Despite its simplicity, their strategy allows 
identification in Figure 2(b) of some patterns that were hidden in 
2(a), including the presence of a cluster in the central region. 
However, the overlapping resulting from the crossings of line 
segments is unduly highlighted, which aggravates cluttering. 

                (a)                                                (b) 
Figure 2 – a) Visualization of Pollen data set; b) Visualization of the 
same data set, with the intensity of the grey levels set proportionally 
to  the  superimposition  of  the  poly-lines over a black background 

[Wegman and Luo 1996]. 

Fua, Ward and Rundensteiner [3] also propose a solution to 
scale Parallel Coordinates to handle larger data sets and detect the 
presence of clusters. They apply a hierarchical clustering 
algorithm to the data, and use a variation on Parallel Coordinates 
to convey aggregation information for the resulting clusters. Users 
may navigate the resulting hierarchical structure until a desired 
focus region and level of detail are reached, using a suite of 

1 available at http://lib.stat.cmu.edu/datasets/
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navigational and filtering tools. In this way, a multi-resolution 
view of the data is generated that, with proper interaction, can 
assist the systematic discovery of data trends and hidden patterns.

Rodrigues Junior et al. [10] use data frequency information to 
highlight high frequency regions in cluttered Parallel Coordinates 
plots. In this technique, referred to as Frequency Plots, the 
frequency of each value for each attribute is calculated (i.e., 
frequency is computed in the one-dimensional space defined by 
each attribute). In tracing the polygonal lines, the intensity of the 
pixels along each line segment are interpolated from the frequency 
values ascribed to the extreme points positioned in the parallel 
axes. Whenever the classes are known, the Frequency Plot is 
useful to highlight the behavior of attributes of items belonging to 
a given class. However, it is less efficient to support identification 
of patterns in the whole data set, as illustrated in Figure 3, which 
displays the Frequency Plot generated for the Pollen data. 

Figure 3 – Visualization of Pollen data set using the Frequency Plot.

Several approaches have been reported to identify clusters in 
large data sets, many of which are based on density estimates. For 
example, Denclue [4], HD-Eye [5] and HC-Cooperative [1], work 
with densities calculated over bidimensional projections from the 
multidimensional data. The multidimensional clusters are defined 
from the clusters observed in the projected spaces, where the 
major difficulty is precisely the definition of the most adequate 
projections.

3 Interactive Parallel Coordinates Frequency and Density 
Plots

In this section, we present the algorithms for creating Interactive 
Parallel Coordinates Frequency Plots and Interactive Parallel 
Coordinates Density Plots. Generating an IPC Density Plot
requires a minor change in the strategy to generate the IPC
Frequency Plot. The strategy of both algorithms is to create bi-
dimensional frequency histograms for each pair of attributes to be 
exhibited in consecutive axes in the Parallel Coordinates 
visualization. From these histograms, informing the occurrence of 
pairs of attribute values, one obtains information on frequency and 
on the relative density of the data. The number of intervals for the 
histograms is determined by the resolution of the axes in the 
Parallel Coordinates plot to be generated. A two-dimensional 
matrix FLxL is computed that stores the frequency of each pair of 
attribute values, which is then used to draw the polygonal lines for 
the records in the data set. All the non-zero matrix elements fi,j

generate a line segment (i,j) in the visualization, and the (uniform) 
pixel intensity used to draw the line segment is set proportionally 
to the frequency of the associated (i,j) pair. Each line segment is 
drawn with the Bresenham algorithm, considering that pixels with 
lower intensity should not be superimposed onto those with higher 
intensities. In this way, line segments associated with lower 
frequency items are drawn with lower lightness, being 
superimposed by those with higher lightness values. This process 
may be generalized for a data set with n attributes: In this case, n-1

two-dimensional frequency matrices are created, one for each pair 
of attributes associated with consecutive axes in the Parallel 
Coordinates plot.

3.1 IPC Plots 

The algorithm that implements the strategy described above is 
presented in Box 1. It operates over a discrete raster representation 
of the Parallel Coordinates plot, stored in matrix G. The mapping 
described in Step 2 would also take place when drawing a 
conventional Parallel Coordinates plot, since the possible values 
of each attribute must be mapped into the discrete screen 
coordinate system. This mapping also solves the problem of 
defining the number of bins necessary for creating the frequency 
histograms stored in matrix F.

At the end, the data stored in G assumes values between zero 
and large numbers, according to the computed frequency for the 
corresponding position. Assuming that G will be exhibited in gray 
scale, its values must be mapped to an adequate interval, normally 
[0,255]. An initial mapping to determine the intensity of the pixel 
I with coordinates (p,q) is given by Equation (3), where Max(G) is 
the largest value in matrix G:
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1 – Initialize matrix GLxW, whose dimensions L and W are defined by 
the plot’s pixel resolution (L is determined by the vertical resolution, 
W is determined by the horizontal resolution) with zeros;  

Let gp,q = 0                      for p=1,...,L  and q=1,...,W
2 – Given the original data set stored in matrix Dmxn, where m is the 
number of records and n is the data set dimensionality (number of 
record attributes), construct an auxiliary matrix Amxn such that:
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,
    for i=1,…,m    and j=1,…,n

    where: maxj = Max{dk,j | k =1, ,m}  and minj = Min{dk,j | k =1, ,m}

/* matrix A stores the values in D, normalized to the interval [0,L] */ 
/* matrix A contains integer values only                                         */ 
3 – Compute matrix FLxL for each consecutive pair of record          
attributes                                            /* F  is a frequency matrix  */ 
       For i = {2,...,n} do: 

  Let fj,k = 0  for j=1,…,L and  k=1,...,L; /*Initialize F with zeros*/ 
  3.1 For r = {1,…,m}  do: 
          Let b = ar,i-1  and c = ar,i

          Increment element fb,c;

  3.2 For each fj,k  0,    with  j=1,…,L and  k =1,…,L  compute: 
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  3.3 Use the Bresenham algorithm to compute the coordinates 
s,t of all pixels in the line segment joining pixels u:(ux,uy) and v:(vx,vy);
for each position (s,t) computed, define the corresponding pixel 
intensity in matrix G:  if gt,s < fj,k  let gt,s = fj,k ;
/* lightness is set proportionally to the corresponding value stored 
    in matrix F                                                                                    */ 
4 – Display the resulting IPC Frequency Plot, stored in matrix G.

Box 1 – Algorithm for building the Interactive Parallel Coordinates 
Frequency Plot.

A density estimation for the data may be obtained applying a 
smoothing filter, e.g., a square wave filter as in Figure 4, to the 
matrix F created with the algorithm in Box 1 (prior to executing 
Step 3.2). This produces the IPC Density Plot. Even though the 
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smoothing filter introduces poly-lines that do not directly map 
records of the original data set, the resulting visualization is 
nevertheless very efficient in highlighting clusters, if they exist. 
When the visual analysis requires identification of individual 
records, it is more convenient to use the IPC Frequency Plot.

Figure 4 – Square wave smoothing filter. 

Choosing the number of bins for generating the frequency 
histograms equal to the display resolution of the axes ensures that 
frequency computation on each 2D projection space is compatible 
with display resolution, so that no aggregation is required prior to 
exhibition. However, one might compute frequencies at a higher 
resolution, in order to support fast zooming on regions of interest. 

3.2 Performance 

The algorithm adopted has time complexity O(mn), where m is the 
number of records in the data set and n is the number of attributes, 
i.e., the data set dimensionality. Complexity is governed by the 
steps required to create the frequency matrices: one such matrix 
must be computed for each consecutive pair of record attributes 
(Step 3 in the algorithm), and computing requires going over each 
record in the data set (Step 3.1). Figure 5 shows logarithm curves 
for the algorithm-running times, in seconds, for data sets with 
different values of m and n. The machine employed in the tests has 
an AMD Athlon(tm) processor of 1.8 Ghz and 2 Gigabytes of RAM 
memory. Data sets were fully allocated in RAM, thus avoiding 
hard disk access. The required storage space is determined by the 
memory to allocate matrices F and G, whose dimensions are 
determined by the resolution of the plots to be generated, rather 
than by the size or dimensionality of the original data set. 

Figure 5 – Running times in seconds for the proposed algorithm 
applied to data sets with different values of m and n.

3.3 Interaction with IPC Frequency and Density Plots 

An immediate interaction with the frequency and density-based 
visualizations allows the user to alter interactively the function for 
mapping frequency or density to pixel intensity, given by Equation 
(3), using a scaling factor as desired. It is thus possible to control 
the presentation to highlight regions of low frequency or density, 
or decrease the intensity in regions of high frequency or density. 
One function that meets these criteria is given in Equation (4). 
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where the scaling factor s is a positive real number determined by 
the user, and Max(G) is the largest value in matrix G.

Figure 6 shows the visualization of data set Sint1 when a 
scaling factor s = 0.5 is applied between the second and third axes, 
s = 2.0 between the third and fourth axes. For the remaining 
regions s = 1.0 has been applied. Two thresholding operations 

may be applied to remove from the visualization those polygonal 
lines depicting records with low frequencies, thus reducing clutter. 
In both, the user defines a threshold value T (an integer value). In 
the first approach, called AND thresholding, records with 
frequency values below the given threshold value T in any of the 
computed matrices F are eliminated. In the second approach (OR
thresholding) the records with frequency values below T in all F
matrices computed are eliminated. These operations provide a 
simple way of eliminating markers that map records with low 
frequency or density. Conversely, one can set T so as to keep in 
the visualization only markers for records with low frequency or 
density, thus allowing outlier records to be determined and 
visually highlighted. The use of these operations is further 
illustrated in Section 4. 

Figure 6 – Sint1 data visualized with different values of s.

4 Results 

Figure 7 shows visualizations of the Pollen data with the proposed 
algorithms. As expected, the density-based visualization, 
illustrated in the IPC Density Plot of Figure 7(b), is more effective 
to highlight the clusters in the central region of the plot than the 
IPC Frequency Plot of Figure 7(a).

       (a) 

       (b) 
Figure 7 – Visualization of the Pollen data using a) IPC Frequency 

Plot; b) IPC Density Plot.
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None of them suffers from the visual clutter resulting from 
highlighting the poly-lines crossings, a limitation of the method by 
Wegman and Luo [16] (Figure 2(b)). Our approach allows clusters 
to be effectively singled out from the remaining data, and 
observing Figure 7 one easily recognizes the clusters mentioned 
by Wegman and Luo [16], which also appear in Figure 2(b). 

Figure 8(a) and 8(b) show, respectively, the IPC Frequency 
Plot and the IPC Density Plot, which reveal the four relevant 
clusters in the Sint1 data (also depicted in Figure 1). We know that 
the data set contains five clusters, and the 2,920 records that 
effectively belong to these clusters are displayed in Figure 8(c). 

(a)

(b)

(c)

Figure 8 – a) IPC Frequency Plot of the Sint1 data (7,500 five-
attribute records); b) IPC Density Plot; c) 2,920 records that are 

effectively in the five clusters. 

In Figure 9 we show the result of applying an AND thresholding 
operation, with different threshold values, to the Sint1 data set 
visualization displayed in Figure 8(a). Figure 9(a) shows the 
records displayed with a user-defined threshold value T(AND) = 2, 

meaning that a poly-line will be exhibited only if the frequencies 
of occurrence of all its consecutive attribute pairs in the data set 
are equal to or greater than 2. The result of setting the threshold 
value T(AND) = 3, is displayed in 9(b). In the first visualization 
there are 2,773 records displayed, and the second one shows 1,802 
records (these numbers are logged and reported by the algorithm). 
Even though a number of records that do belong to clusters were 
hidden from the visualization, the thresholding operation is a 
simple way of detecting the presence of the clusters and their 
shape, especially considering the high level of noise in the data, 
close to 60%. 

(a)

(b)

Figure 9 – a) From the original 7,500 records in the data set, 2,773 
records are shown with T(AND) = 2; b) 1,802 records shown with a 

threshold value T(AND) = 3. 

Figure 10 shows the result of applying an OR thresholding to 
the Pollen data set. In 10(a), with T(OR) = 3, a total of 117 records 
are displayed. The same data points are shown in a 3D scatterplot 
in Figure 10(b) – the scatterplot has been created projecting the 
first three attributes of the data. Figure 10(c) brings the 87 records 
displayed when T(OR) = 4 is selected, and Figure 10(d) shows the 
corresponding 3D scatterplot projection of the first three 
attributes. In Figures 10(a) and 10(b) (obtained with T(OR) = 3) 
one sees that a few records are shown that do not actually belong 
to the clusters. On the other hand, the value T(OR) = 4 keeps only 
87 records, whereas it is known that there are 99 registers in the 
clusters. To obtain the clusters precisely, the user may set T(OR) = 
3 and interact with the visualization to filter out the extraneous 
records.
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                                (a)                                                (b) 

                               (c)                                                 (d) 

Figure 10 – a) 117 records obtained with T(OR) = 3 applied to the 
Pollen data; and b) projection of these records using the first three 
data attributes; c) 87 records obtained with T(OR) = 4; and d) their 

projection using the first three data attributes. 

The IPC plots also allow a user to interactively identify clusters 
in a crowded data set, as illustrated as follows with the Sint1 data. 
In the IPC Density Plot created for this data, shown in Figure 
11(a), the user delimits a region of interest, as indicated, on axis 4 
to select the corresponding records. This axis was chosen because 
its data distribution clearly shows the presence of 3 groups – the 
region encompassing one of such groups was arbitrarily chosen. In 
11(b) only the records selected in 11(a) are displayed. The 
selected records are shown in 11(c) with uniform lightness 
(lightness was previously set proportional to density). This facility 
may be necessary to assist a user in deciding whether a group is 
already properly defined. One sees that, in this case, characterizing 
the cluster requires other regions to be delimited on other attribute 
axes – this cluster is completely defined only on the five-
dimensional data space. In other situations it may be enough to 
delimit regions over a sub-set of attribute axes. Once the user 
visually characterizes the cluster by delimiting its corresponding 
regions on the remaining axes, the selected records are 
highlighted, as shown in the visualization in Figure 11(d): all the 
resulting records, 729 in this case, clearly define a cluster and are 
allocated to Group 1. Once a cluster is identified, the following 
visualizations can show only the remaining records, hiding those 
already allocated to a group (Figure 11(e)).  

One may follow the same interactive approach to isolate a new 
group, until all visible groups are isolated. Visually isolating new 
groups becomes gradually easier as more records are removed 
from the IPC Density Plot. The process enables a user to 
successfully identify and extract the four relevant groups in the 
data set, resulting in 729 records allocated to cluster 1, 609 
allocated to cluster 2, 728 allocated to cluster 3, and 850 allocated 
to cluster 4. The group with only 8 records could not be detected; 
on the other hand, four records originally classified as random 
noise by the algorithm that generated the data were correctly 
allocated to groups, because in fact they can be considered as part 
of them.  

(a)

(b)

(c)

(d)

(e)
Figure 11 –  Interactive high-dimensional clustering with IPC

Density Plot.
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Once a group has been visually delimited, it is important to 
verify if all its records were effectively included by properly 
delimiting attribute intervals. The presence of high-lightness (i.e., 
high-density) markers close to the interval borders may indicate 
that records belonging to the group were left out. In this case, the 
user should cancel the region markings over the axes and repeat 
the process, taking the largest possible number of axes from the 
present visualization and increasing the size of the delimited 
intervals over the axes, in order to include any unduly excluded 
records.

Figure 12 shows how clusters in the Pollen data set are visually 
identified using the above process. In 12(a) the IPC Density Plot
and the user-defined markings on four of the five attribute axes are 
shown. Figure 12(b) displays only the records within the selected 
areas. It shows 99 records, where 98 do belong to the six clusters 
in the data, and one was unduly added. This latter record may be 
eliminated at a later step. 

 (a) 

 (b) 

Figure 12 – a) Visualization of Pollen data using the IPC Density 
Plot with the intervals along the axes being selected by the user; b) 

Zoom on the selected records. 

Figure 13 shows visualizations of real remotely sensed data, 
named Out5d2, which contains 16,384 data points. Five distinct 
channels, namely SPOT, magnetics, potassium, thorium, and 
uranium, are combined for a region in Western Australia. Figure 
13(a) shows a conventional Parallel Coordinates plot of the data. 
Figure 13(b) shows a view obtained with Hierarchical Parallel 
Coordinates (created with XmdvTool [13]), whereas Figures 13(c) 
to (e) show some IPC Density views.

2
http://davis.wpi.edu/~xmdv/datasets.html

(a)

(b)

(c)

(d)

(e)
Figure 13 – Views of the Out5d data set: (a) Parallel Coordinates; 

(b) Hierarchical Parallel Coordinates; (c) IPC Density; (d) User 
selection on data, density-varying intensity, (e) Uniform intensity. 

SPOT     Magnet.       Potass.       Thor.         Uran.
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The axes in all visualizations are arranged to map to the 
attributes in the same order as they appear in the data set. Figure 
13(c) shows a standard IPC Density view, with line intensities set 
proportionally to data density. One observes, for example, two 
distinct data signatures, one showing a pattern of high potassium 
and low magnetics; and another one showing a pattern of high 
magnetics and low SPOT and potassium. In Figure 13(d) the data 
points showing a pattern of high potassium and low magnetics 
have been selected by the user, who marked the high density 
regions over the corresponding axes as shown in Figure 13(c). The 
resulting data points (2,475 records) are shown with uniform 
intensity in Figure 13(e). 

Note that interesting patterns can be identified and extracted 
from the visualization, even if they do not define nice clear bands 
as in Figures 6 and 8. These patterns are also observable from the 
HPC visualization [3], which can also convey clusters in large 
data sets. The approaches differ in that HPC plots reduce the 
amount of clutter by displaying aggregations of the data at 
different levels of abstraction, obtained by applying a hierarchical 
clustering prior to visualization. IPC Density plots reduce clutter 
by emphasizing regions of high data density, looking at 2D data 
projections. As such, it can quickly highlight the presence of 
patterns in very noisy data, providing a useful tool for rapid 
inspection of large data sources. 

5 Conclusions

We introduced a simple and efficient approach to construct 
frequency and density plots from Parallel Coordinates 
visualizations. The new plots support interactive data exploration 
of large and high-dimensional data sets, allowing users to remove 
noise and highlight areas with high concentration of data. As a 
consequence, clusters may be visually identified and extracted in 
an interactive user-controlled process, regardless of their shape 
and dimensionality. The proposed algorithms use only integer 
arithmetic to compute the frequency matrices, and are thus very 
fast. They provide an interesting alternative to analytic clustering 
and other visual clustering approaches for handling complex high-
dimensional data sets. We have applied the algorithms to data sets 
as large as 1,000,000 records and 200 attributes. As further work 
we intend to compare the results obtained with this visual 
approach with other algorithms for high dimensional clustering. 
We shall also investigate how the IPC Density algorithm may be 
adapted to provide different levels of clustering by varying the 
size of the density estimation filters.  
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